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Abstract. Based on the calculation of survival probabilities, we suggest a procedure to assess the value of
G3P , the triple pomeron ‘bare’ coupling constant, by comparing the large rapidity gap single high mass
diffraction data in proton–proton scattering and J/Ψ photo and DIS production. For p–p scattering the cal-
culation in a three amplitude rescattering eikonal model predicts the survival probability to be an order of
magnitude smaller than for the two amplitude case. The calculations of the survival probabilities for photo
and DIS J/Ψ production are made in a dedicated model. In this process we show that, even though its
survival probability is considerably larger than in p–p scattering, its value is below unity and cannot be
neglected in the data analysis. We argue that, regardless of the uncertainties in the suggested procedures,
the outcome is important, both with regards to a realistic estimate of G3P and to the survival probabilities
relevant to LHC experiments.

PACS. 13.85-t; 13.85.Hd; 11.55.-m; 11.55.Bq

1 Introduction

A large rapidity gap (LRG) process is defined as one where
no hadrons are produced in a sufficiently large rapidity in-
terval. Diffractive LRG is assumed to be produced by the
exchange of a color singlet object with quantum numbers
of the vacuum, which we will refer to as the pomeron. We
wish to estimate the probability that a LRG, which oc-
curs in diffractive events, survives rescattering effects that
populate the gap with secondary particles coming from the
underlying event.
At high energies, elastic and inelastic diffractive pro-

cesses account for about 40% of the total p–p (p̄–p) cross
section. We would like to remind the reader that:

1. The small t behavior of the scattering amplitude is de-
termined, mostly, by large impact parameter b values.

2. The survival probability 〈|S|2〉 (denoted S2) of a diffrac-
tive LRG is obtained from a normalized convolution of
the b-space diffractive amplitude squared and e−Ω(s,b).
Ω(s, b) is the optical density, also called the opacity.
Consequently, S2 decreases with increasing energy due
to the growth with energy of the interaction input
opacity.

3. S2 is not only dependent on the probability of the ini-
tial state to survive, but it is also sensitive to the spatial
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distribution of the partons inside the incoming hadrons
and, thus, on the dynamics of the whole diffractive part
of the scattering matrix.

4. S2, at a given energy, is not universal. It depends on the
particular diffractive subprocess as well as on the kine-
matic configurations. It also depends on the nature of
the color singlet (P ,W/Z or γ) exchange that is respon-
sible for the LRG.

Historically, both Dokshitzer et al. [1–3] and Bjor-
ken [4, 5] suggested utilizing a LRG as a signature for Higgs
production originating from aW–W fusion sub-process in
hadron–hadron collisions. It turns out that LRG processes
give a unique opportunity to measure the high energy
asymptotic behavior of the amplitudes at short distances,
where one can calculate the amplitudes using methods de-
veloped for perturbative QCD (pQCD). Consider a typical
LRG process – the production of two jets with large trans-
verse momenta pt1 ≈−pt2� µ, with a LRG between the
two jets. µ is a typical mass scale of the soft interactions.

p(1)+p(2)−→M1[hadrons+ jet1(y1, pt1)]

+LRG[∆y = |y1−y2|]

+M2[hadrons+ jet2(y2, pt2)] . (1)

y1 and y2 are the rapidities of the jets and ∆y� 1. The
production of two hard jets with a LRG is initiated by the
exchange of a hard pomeron. We define Fs to be the ratio
between the cross section due to the above pomeron ex-
change, and the inclusive inelastic cross section with the
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same final state generated by gluon exchange. In QCD we
do not expect this ratio to decrease as a function of the
rapidity gap ∆y. For a BFKL pomeron [6–8], we expect
an increase once ∆y� 1. Using a simple QCD model for
the pomeron, in which it is approximated by two gluon
exchange [9–11], Bjorken [4, 5] gave the first estimate for
Fs ≈ 0.15, which is unexpectedly large.
As noted by Bjorken [4, 5] and GLM [12], one does not

measure Fs directly in a LRG experiment. The experimen-
tally measured ratio between the number of events with
a LRG, and the number of similar events without a LRG
is not equal to Fs, but, has to be modified by an extra sup-
pression factor, which we call the LRG survival probability,

fgap = 〈|S|
2〉Fs . (2)

The appearance of S2 in (2) has a very simple phys-
ical interpretation. It is the probability that the LRG
due to pomeron exchange will not be filled by the pro-
duced particles (partons and/or hadrons) from the rescat-
tering of the spectator partons, or from the emission of
bremsstrahlung gluons coming from the partons, or the
hard pomeron, taking part in the hard interaction.

〈|S|2〉= 〈|Sbremsstrahlung(∆y = |y1−y2|)|
2〉

× 〈|Sspectator(s)|
2〉 , (3)

where s denotes the total c.m. energy squared.

• S2bremsstrahlung(∆y) can be calculated in pQCD [13–15].
It depends on the kinematics of each specific process and
on the value of the LRG. This suppression is commonly
included in the calculation of the hard LRG subprocess.
• To calculate S2spectator(s) we need to find the probability
that all partons with rapidity yi > y1 in the first hadron,
and all partons with yj < y2 in the second hadron, do
not interact inelastically and, hence, do not produce
additional hadrons within the LRG interval. This is
a difficult problem, since not only partons at short dis-
tances contribute to such a calculation, but also par-
tons at long distances, for which the pQCD approach is
not valid. Many attempts have been made to estimate
S2spectator [4, 5, 12, 16–20], but a unique solution has still
not been found.

An obvious check of the above is to compare the cal-
culated values of S2spectator(s) obtained in different models
for different reactions. The Durham group [21] recently
suggested a very interesting procedure, proposing to ex-
tractG3P , the triple pomeron vertex coupling, utilizing the
measurement of large mass diffraction dissociation in the
reaction

γ∗(Q2, xBj)+p=⇒ J/Ψ +[LRG]+X(M
2�mp) . (4)

The cross section of this process can be described by the
Mueller diagram (Fig. 1). It is initiated by the charm com-
ponent of the photonwhich has a small absorptive cross sec-
tion, since its interaction stems from short distances (r ∝
1/mc, wheremc is the mass of the charm quark). Thus, the
probability for additional rescatterings (Fig. 2) is relatively

Fig. 1. The general diagram for diffractive production of large
masses in γ∗–p collisions at high energy. Pomerons are denoted
by the zigzag lines. The vertical lower pomeron is soft. The two
pomerons coupled to the photon vertices are hard

Fig. 2. The general diagram for calculating the survival prob-
ability for diffractive production of large masses in γ∗–p colli-
sions at high energy. The pomerons’ identification is identical to
the previous figure

Fig. 3. The general diagram for diffractive production of large
masses in p–p collisions at high energy. The zigzag lines denote
soft pomerons

Fig. 4. The general diagram for calculating the survival proba-
bility for diffractive production of large masses in p–p collisions
at high energy. The zigzag lines denote soft pomerons

small, resulting in a high survival probability. This is to be
compared with the corresponding high mass diffraction in
an hadronic p–p (p̄–p) reaction (Fig. 3), for which we ex-
pect the rescatterings (Fig. 4) to be significant, resulting in
a small survival probability [22–29]. It is, therefore, very
probable that present extractions [30–33] of the 3P coup-
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ling are underestimated. Comparing the values of G3P ob-
tained in the above two channels, taking into account their
(different) survival probabilities, leads to a more reliable
measure of the 3P coupling and provides a check of the vari-
ous theoretical estimates of the survival probabilities.
The purpose of this paper is to re-examine the proced-

ure to extract the value of G3P , the triple pomeron ‘bare’
coupling constant. As a by-product we assess the stability
of the survival probabilities obtained in two and three am-
plitude eikonal rescattering models. The following topics
are addressed:

1. We estimate the survival probability values for the
triple pomeron vertex in p–p highmass single diffractive
(SD) collisions.

2. We investigate the difference between the survival prob-
abilities associated with high mass SD and the inclusive
SD channels.

3. The above calculations are carried out in the two chan-
nel GLM model [34–37], in which we compare the out-
put of its two and three amplitude representations, so as
to assess the reliability of our results.

4. We calculate the survival probability for the reaction
given by (4). Note that in an hadronic high mass SD re-
action the 3P coupling consists of three soft pomerons.
Equation (4) is a hard process in which two hard
pomerons couple to a soft one. It is possible, but not
necessary, that the above 3P couplings are equal.

The plan of our paper is as follows. In the next section
we calculate S2spectator(s) for high mass diffraction in p–p
scattering in two [34] and three [35] amplitude models for
the soft interactions. The models are specified and their
outputs compared. In Sect. 3 we present our estimates for
the survival probability of the process of (4). These calcu-
lations, carried out in a dedicated model [38], show that
even though the J/Ψ survival probabilities are significantly
larger than those calculated for p–p, they cannot be neg-
lected. We note that, the reliability and accuracy of the
J/Ψ calculations are considerably better than in the p–p
channel. In the conclusions, we summarize our main results
and specify some remaining problems.
Prior to discussing the details of our calculations, we

wish to point out that, the processes given by (1) and (4)
are restricted to the production mechanism presented in
the corresponding Figs. 2 and 4. In these diagrams we do
not take into account a possible triple pomeron interac-
tion between the two upper pomerons and the target. In
so doing, we assume that the value of G3P , the coupling
of the triple pomeron vertex, is sufficiently small so as to
only consider it once. However, if the value of G3P , ex-
tracted from the data following the procedure suggested in
this paper, turns out to be large, we shall have to modify
our calculations, without the convenience resulting from
our input supposition. Our input assumption is supported
by our output results, which provide a good reproduction
of the soft scattering data, and the corresponding survival
probabilities for soft and hard diffractive processes. There
are some theoretical estimates [39–42] in which G3P is
large, due to the contribution of hard processes.

2 Survival probability for the triple pomeron
vertex in proton–proton collisions

2.1 Survival probability in the eikonal model

The cross section for diffractive dissociation in the region of
largeM can be viewed as a Mueller diagram (Fig. 3) which
can be rewritten in terms of the triple pomeron vertex [30].
We denote this cross section σ3P and its corresponding sur-
vival probability, at a givenM2, S23P (M

2).

M2
dσ3P

dtdM2
=
g2p(t)gp(q

2 = 0)G3P (t)

16π2

×

(
s

M2

)2αP (t)−2(M2
s0

)αP (q2=0)−1
, (5)

where g(t) describe the vertex of pomeron–proton interac-
tion, and G3P stands for the triple pomeron vertex. How-
ever, this diagram does not take into account the possibil-
ity of additional rescatterings of the interacting particles
shown in Fig. 4. The result can be written as

M2
dσ3P

dtdM2
= S23P (M

2)
g2p(t)gp(q

2 = 0)G3P (t)

16π2

×

(
s

M2

)2αP (t)−2(M2
s0

)αP (q2=0)−1
.

(6)

The survival probability factor S23P (M
2) is defined1 as

S23P (M
2) =

∫
d2ktM

2 dσ3P

dk2t dM
2 (Fig. 4)∫

d2ktM2
dσ3P

dk2t dM
2 (Fig. 3)

, with t=−k2t .

(7)

The easiest way to calculate the diagram of Fig. 4 is to
first transform the diagram of Fig. 3 to impact parameter
space. This is done by introducing the momentum q along
the lowest pomeron in Fig. 3. In this case,

T (s,M2; q)≡

∫
d2ktM

2 dσ3P

dk2t dM
2
(Fig. 3)

−→

∫
d2kt

gp
(
k2t
)
gp
(
(k− q)2t

)
gp
(
q2t
)
G3P
(
k2t , (k− q)

2
t , q
2
)

16π2

×

(
s

M2

)αP (k2t )+αP ((k−q)2t )−2(M2
s0

)αP (q2)−1
. (8)

From (8) we find the form of this amplitude in impact pa-
rameter space to be

T (s,M2; b)≡

∫
d2q

(2π)2
A(s,M2; q) . (9)

1 S23P (M
2) denotes the high mass SD survival probability, at

a given M2, and it is identical to S2spectator(s) for this specific
SD reaction.
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Using a linear approximation for the pomeron trajectory
and a Gaussian form for all vertices

αP (t) = 1+∆α
′
P t , gp(k

2) = gp(0)e
−bpk

2
,

G3P (k1, k2, k3) =G3P (0, 0, 0)e
−bp(k21+k

2
2+k

2
3), (10)

we obtain

T (s,M2; b) =
g3P

16π2
ν(ξ)ν(ξ)ν(y)

π

d(ξ)+d(ξ)+d(y)

× exp

(
−
d(y)[d(ξ)+d(ξ)]

d(ξ)+d(ξ)+d(y)
b2
)
,

(11)

y = ln
(
M2/s0

)
, ξ = ln(s/M2) ,

g3P ≡G3P (0, 0, 0)/gp(0) , ν(y) =
g2p(0)

πR̄2(y)
e∆y ,

(12)

where

R̄2(y) = 2R20+ r
2
0+4α

′
Py , d(y)≡

1

R̄2(y)
. (13)

r20 denotes the radius of the triple pomeron vertex. In the
following we take [43] r20 = 0.5GeV

−2.
Using (11), the expression for the survival probabil-

ity (see (7)) in a simple eikonal model, accounting for the
rescattering corrections, can be written as

S23P (M
2) =

∫
d2b T (s,M2; b) exp(−Ω(ξ+y; b))∫

d2b T (s,M2; b)
,

where

Ω(ξ+y; b) = νppe
− b2

Rpp(ξ+y) , (14)

νpp =
g2p(0)

πRpp(ξ+y)
e∆(ξ+y) and

Rpp(ξ+y) = 4R
2
0,p+4α

′
P (ξy) . (15)

2.2 Two channel models: main ideas and formulae

In the eikonal model only elastic rescatterings have been
taken into account. Two channel eikonal models have
been developed so as to also include rescatterings through
diffractive dissociation (see [34–37] and references therein).
In this formalism, diffractively produced hadrons at a given
vertex are considered as a single hadronic state described
by the wave function ΨD, which is orthonormal to the wave
function Ψh of the hadron (proton in the case of interest),
〈Ψh|ΨD〉= 0.
Introducing two wave functions that diagonalize the

2×2 interaction matrix T

Ai,k = 〈ΨiΨk | T | Ψi′Ψk′〉=Ai,kδi,i′δk,k′ , (16)

In our past publications we referred to the GLM eikonal
models according to the number of the rescattering chan-
nels considered, i.e. elastic [43], elastic+SD [34] and

elastic+SD+DD [35]. In retrospect, we consider it more
appropriate to define these models according to the dimen-
sionality of their base. We, therefore, call the above a two
channel model, making the distinction between its two and
three amplitude representations.
We can rewrite the amplitude Ai,k in a form that satis-

fies the unitarity constraints:

Ai,k(s, b) = i

(
1− exp

(
−
Ωi,k(s, b)

2

))
. (17)

In this formalism we have

Gini,k(s, b) = 1− exp(−Ωi,k(s, b)) . (18)

Gini,k is the probability for all inelastic interactions in the
scattering of particle i off particle k. From (18) we de-
duce that the probability that the initial projectiles reach
the interaction unchanged, regardless of the initial state
rescatterings, is exp(−Ωi,k(s, b)).
In this representation the observed states can be writ-

ten in the form

Ψh = αΨ1+βΨ2 ,

ΨD =−βΨ1+αΨ2 , (19)

where α2+β2 = 1. The obvious generalization of (11) is

T (s,M2; b) =
∑
i,k,l

〈p | l〉2〈p | k〉T l,ik (s,M
2; b)〈p | k〉〈p | i〉2,

(20)

where 〈p | 1〉= α and 〈p | 2〉= β.

T l,ik (s,M
2; b) =

g3P

16π2
νl(ξ)νi(ξ)νk(y)

π

dl(ξ)+di(ξ)+dk(y)

× exp

(
−
dk(y)[dl(ξ)+di(ξ)]

dl(ξ)+di(ξ)+dk(y)
b2
)
, (21)

where g3P =G3P /g1(0) and

νk(y) =
gk(0)g1(0)

πR̄2k(y)
e∆y, and R̄2k(y) = 2R

2
0,k+ r

2
0+4α

′
Py ,

dk(y)≡
1

R̄2k(y)
. (22)

The numerator of (14) is written in this representation as

∫
d2ktM

2 dσ3P

dk2t dM
2
(Fig. 4)

=

∫
d2b
∑
i,k,l

〈p | l〉2〈p | k〉e−
Ωl,k(s,b)

2 T l,ik (s,M
2; b)

× e−
Ωi,k(s,b)

2 〈p | k〉〈p | i〉2.

(23)

For Ωi,k(s, b) we take

Ωi,k(s, b) = νi,ke
− b2

R2
i,k
(ξ+y)

, (24)



E. Gotsman et al.: Survival probabilities for high mass diffraction 299

where

νi,k =
gi(0)gk(0)

πR2i,k(ξ+y)

(
s

s0

)∆
, and

R2i,k(ξ+y) = 2R
2
0,i+2R

2
0,k+4α

′
P (ξ+y) . (25)

In the following we denote g2i,k = gi(0)gk(0).
In our calculations we take [34]R20,1 as a free parameter,

while R20,2 = 0. The survival probability can be calculated
as the ratio

S23P (M
2) =

∫
d2bN(ξ, y; b)∫
d2bD(ξ, y; b)

, (26)

where

N(ξ, y; b) = α6T 1,11 (b)e
−Ω1,1(b)

+2α4β2T 1,21 (b)e
−
Ω1,1(b)+Ω1,2(b)

2

+α2β4T 2,21 (b)e
−Ω1,2(b)+α4β2T 1,12 (b)e

−Ω1,2(b)

+2α2β4T 1,22 (b)e
−
Ω2,2(b)+Ω1,2(b)

2

+β6T 2,22 (b)e
−Ω2,2(b), (27)

and

D(ξ, y; b) = α6T 1,11 (b)+2α
4β2T 1,21 (b)+α

2β4T 2,21 (b)

+α4β2T 1,12 (b)+2α
2β4T 1,22 (b)+β

6T 2,22 (b) .
(28)

For completeness we also present the integrated cross
sections of the diffractive channels in the two channel
model, together with the corresponding elastic and total
cross sections. The amplitudes for the elastic and the
diffractive channels have the following form [34, 35]:

ael(s, b)

= i

(
1−α4e−

Ω1,1(s,b)

2 −2α2β2e−
Ω1,2(s,b)

2

−β4e−
Ω2,2(s,b)

2

)
, (29)

asd(s, b)

= iαβ

(
α2e−

Ω1,1(s,b)

2 − (α2−β2)e−
Ω1,2(s,b)

2

−β2e−
Ω2,2(s,b)

2

)
, (30)

add(s, b)

= iα2β2
(
−e−

Ω1,1(s,b)

2 +2e−
Ω1,2(s,b)

2 − e−
Ω2,2(s,b)

2

)
.

(31)

Using (24) and (25) as well as the general cross section
formulae, we get

σtot(s) = 2

∫
d2b ael(s, b) , σel(s) =

∫
d2b |ael(s, b)|

2,

(32)

σsd(s) =

∫
d2b |asd(s, b)|

2, σdd(s) =

∫
d2b |add(s, b)|

2.

(33)

It is instructive to present the calculation for the
diffractive channels in the form of a survival probabil-
ity, which we define as the ratio of the output corrected
diffractive cross section to the input non-corrected cross
section:

S2sd =

∫
d2b |asd(s, b)|2∫
d2b |a1sd(s, b)|

2
, (34)

where

a1sd(s, b) =
iαβ

2

(
−α2Ω1,1(s, b)+ (α

2−β2)Ω1,2(s, b)

+β2Ω2,2(s, b)
)
. (35)

We will discuss the results and interpretation of our calcu-
lations in the next subsection.

2.3 Three models used
for fitting the experimental data

To calculate the survival probabilities one needs to spec-
ify the opacities Ωi,k(s, b). These are determined from
a global fit of the experimental soft scattering data. We
have used three models based on the general formulae
given in (21)–(25), but with different input assumptions.
Note that the above global fit has, in addition to the
pomeron contribution, a secondary Regge sector (see [34]).
This is necessary as the data base contains many experi-
mental points from lower ISR energies. A study of the
pomeron component alone, without a Regge contribution,
is not possible at this time, since the corresponding high
energy sector of the data base is too small to constrain the
fitted parameters. The Regge parameters are not quoted in
this paper and will be discussed in detail in a forthcoming
publication.

2.3.1 Two amplitude model

In this model, denoted by model A [34] we assume that the
double diffraction cross section is negligible, and we take
add in (31) to be zero. This allows us to express Ω2,2 in
terms of Ω1,1 and Ω1,2, leading to the following formulae
(see [34–37]):

ael(s, b) = i

(
1− exp

(
−
Ω1,1(s, b)

2

)

−2β2 exp

(
−
Ω1,1(s, b)

2

)(
1− exp

(
−
∆Ω(s, b)

2

)))
,

(36)

asd(s, b) =−iαβ exp

(
−
∆Ω(s, b)

2

)

×

(
1− exp

(
−
∆Ω(s, b)

2

))
. (37)

The above is a two amplitude model with two opacities
Ω1,1 and∆Ω =Ω1,2−Ω1,1. Following [34], we assume both
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Ω1,1 and ∆Ω to be Gaussian in b.

Ω1,1(s, b) =
g21,1

πR21,1(s)

(
s

s0

)∆
exp

(
−

b2

R21,1(s)

)
,

(38)

∆Ω(s, b) =
g2∆

πR2∆(s)

(
s

s0

)∆
exp

(
−
b2

R2∆(s)

)
. (39)

Note that in this two amplitude model R2∆ is the radius
of ∆Ω(s, b). As we shall see, in the three amplitude model
R21,2 is the radius of Ω1,2. The radii R

2
1,1 and R

2
1,2 are spec-

ified in (25). We have also studied a two amplitude model
in which both Ω1,1 and Ω1,2 are Gaussian in b. The output
obtained in this two amplitude model is compatible with
the output of model A. This is a consequence of the fit,
discussed below, in which consistently Ω1,2�Ω1,1.

2.3.2 Three amplitude models

In the three amplitude models we do not make any as-
sumptions regarding the value of the double diffraction
cross sections [44] which are contained in our data base.
We use (24) and (25) to parameterize the three inde-
pendent opacities: Ω1,1, Ω1,2 and Ω2,2, which are all
taken to be Gaussian in b. For details see [35]. Assum-
ing Regge factorization, Ω1,2 is determined by Ω1,1 and
Ω2,2; see (25). We denote this model B(1). As we shall
see, model B(1) does not reproduce the data well. We
have, thus, also examined a non-factorizable model, de-
noted B(2), in which ν1,2 of (25) has been replaced by the
expression

ν1,2 =
g21,2

πR21,2(ξ+y)

(
s

s0

)∆
, (40)

where g21,2 is a free parameter. This additional degree
of freedom violates Regge factorization for the input
pomeron, but it allows us to describe the experimental
data on the double diffraction cross section that we failed
to fit in model B(1).

2.4 Results

The parameters of model A, quoted from [34] are based on
a fit to 55 experimental data points base, which include
the p–p and p̄–p total cross sections, integrated elastic
cross sections, integrated single diffraction cross sections,

Table 1. Fitted parameters for models A, B(1) and B(2). R20;1,2 =R
2
0;∆ = 0.5R

2
0;1,1, R

2
0;2,2 = 0

Model ∆ β R20;1,1 α′P g21,1 g22,2 g2∆ g21,2
[GeV−2] [GeV−2] [GeV−2] [GeV−2] [GeV−2] [GeV−2]

A 0.126 0.464 16.34 0.200 12.99 N/A 145.6 N/A
B(1) 0.150 0.526 20.80 0.184 4.84 4006.9 N/A 139.3
B(2) 0.150 0.776 20.83 0.173 9.22 3503.5 N/A 6.5

Fig. 5. Total, elastic and diffractive dissociation cross sections
in model B(2)

and the forward slope of the elastic cross section in the
ISR-Tevatron energy range. As stated, we neglected the
(very few) reported DD cross sections. The fitted parame-
ters of model A are listed in Table 1 with a corresponding
χ2/(d.o.f.) of 1.50.
The fit to models B(1) and B(2) are based on the for-

mulae given in the previous subsection and in [35–37]. The
new data base includes the data used for model A, plus 5
double diffraction cross sections points [44]. The values of
the parameters and χ2 associated with B models are also
given in Table 1. The best fit obtained frommodel B(1) has
a χ2/(d.o.f.) = 2.3, which is unsatisfactory. This is mani-
fested not only by the high χ2, but also by inability of the
model to reproduce the σdd points, which are severely un-
derestimated. We thus consider model B(2) in which the
couplings of the three amplitudes are independent. This
model produces a much better fit with χ2/(d.o.f.) = 1.25,
as well as reproducing the experimental results for σdd.
The cross section predictions of model B(2) are shown in
Fig. 5. The parameters associated with models A, B(1) and
B(2) were used to calculate the survival probability for
two different soft SD final states. S23P corresponds to single
diffraction dissociation in the high mass region (see (26)).
We note that S23P is weakly dependent on a largeM

2, with
M the mass of the hadrons produced. S2sd is the survival
probability corresponding to the entire region of the pro-
duced diffractive mass (see (34)). The calculated survival
probabilities are presented in Fig. 6. We note a significant
difference between the various outputs, which will be dis-
cussed below.
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Fig. 6. Survival probabilities for single diffraction p–p colli-
sion. S23P (solid line) denotes the survival probability for high
mass diffraction dissociation (see (26)). S2sd (dotted line) is the
survival probability for diffractive dissociation in the entire
kinematic region (see (34)). The upper curves (solid and dot-
ted) refer to model A [34]. The lower curves relate to model B
of [35]

The following are a few qualitative characteristic re-
marks and comments:

1. Clearly, our analysis favors the non-factorizable in-
put of models A and B(2) over the factorizable input
of model B(1), which is theoretically more appealing.
Technically, the factorization breaking is induced by
the output results, in which g2 is considerably larger
than g1, resulting in A1,2� A1,1. As we have shown
in [35], this is a consequence of the striking experi-
mental observation that in p–p (and p̄–p) scattering
RD = (σel+σsd+σdd)/σtot ≈ 0.4. This is different from
Rel = σel/σtot which rises monotonically with energy.
The analysis made in [35] found that to be consistent
with the experimental behavior of RD and Rel requires
that g2 > 10g1. The best value obtained is g2 =

√
300g1,

which is very close to the values found in model B(2).
2. We observe a general systematic behavior in which
the 3P and SD survival probabilities become smaller
when we add an amplitude to the initial state rescat-
tering chain. In the context of this paper we find that
S2(model A)� S2(model B) for both 3P and SD chan-
nels. We trace this dramatic difference to the relaxation
of the constraints on the initial rescatterings. Allowing
for an additional amplitude enables increased screening
of the input amplitude.

3. An important observation, correlated to the above, is
that the unscreened input cross sections of model B(2)
are considerably larger than the unscreened input cross
sections of model A. This is a consequence of the
large difference between the fitted values of g22,2 of
model B(2) and g2∆ of model A, and, also, the different
values of ∆ (the pomeron intercept) of these models.
Since these models provide compatible good reproduc-
tions of the fitted data base, we conclude that the large
difference in the unscreened cross sections of models A

and B(2) are compensated by the reciprocal difference
in the corresponding survival probabilities.

4. The survival probabilities calculated in our two am-
plitude model A are in agreement with those calcu-
lated by Khoze, Martin and Ryskin in their two channel
model [21], which differs from ours. Our present ob-
servation that the three amplitude model B results in
considerably smaller S2 values implies that the pre-
sumed consistency between most of the published sur-
vival probability outputs (see [36, 37]) should be care-
fully re-examined using more robust models.

5. S23P are consistently higher than S
2
sd. Note that the in-

put of σsd(high mass), described by the triple pomeron
diagram, behaves as s∆. On the other hand σsd(low
mass), for which the triple pomeron diagram is not ap-
plicable, behaves as s2∆.

Diffractive processes are very important at cosmic ray
energies. Komae et al. [45] have shown that diffractive p–p
interactions play a crucial role in understanding the spec-
trum of galactic gamma rays that come predominantly
from π0→ γγ. The inclusion of diffractive processes makes
the gamma ray spectrum harder, and when this is included
together with the assumption of Feynman scaling viola-
tions, one can explain about half of the “GeV excess”. The
magnitude of the diffractive cross sections is a crucial elem-
ent of this and similar studies. A review of our results at
cosmic ray energies will be published elsewhere.

3 Survival probability for triple pomeron
vertex in J/Ψ–p photoproduction and DIS
production

In this section we calculate the survival probabilities for
high mass diffraction in the reaction of (4). From Fig. 2
one can see that we need the following ingredients to make
these estimates: the amplitude for the interaction of a col-
orless dipole with the target, and the description of J/Ψ
production with no initial state interactions with the tar-
get, shown in Fig. 1.
For the scattering dipole amplitude we take a model

developed by one of us [38]. This model is based on the
solution of a generating functional [46–49], with an addi-
tional assumption that the dipoles do not change their sizes
during the interaction. The amplitude is equal to

N(Y = ln(1/x); r, b) =
Ω(Y ; r, b)

1+Ω(Y ; r, b)
, (41)

where

Ω(Y ; r, b) =
π2

Nc
r2xG

(
x0, µ

2
)
xG

(
x

x0
, µ2 =

C

r2
+µ20

)
S(b) .

(42)

S(b) is the proton b-profile,

S(b) =
2

πR2

√
8b

R
K1

(√
8b

R

)
. (43)
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The saturation scaleQ2s (Y ) is defined from the condition

Ω(Y ; rs, b) = 1 , r
2
s = 4/Q

2
s . (44)

The gluon structure function xG(x, µ2) satisfies the
DGLAP evolution equation with the initial condition
xG(x,Q20) = A/x

ω0 at Q20 = 1GeV
2. In other words, (42)

describes the contribution of the hard pomeron that can
be calculated in pQCD. All parameters in (42) have been
found by fitting to the data on F2. The fit is good and has
χ2/d.o.f. = 1.07 [38]. The values of the fitted parameters,
are compatible with the parameter values obtained in other
competing models [50–55]. Equation (43) is the Fourier
transform of the electromagnetic form factor of the proton
in t-space. Equation (41) is quite different from the eikonal
approximation that has been used in other models, and has
a form which is typical for the ‘fan’ diagrams, which are
summed in the mean field approximation (MFA).
One can see directly from (41) and (42) that

N(Y = ln(1/x); r, b)
r→∞; x fixed
−−−−−−−−→ 1 ,

N(Y = ln(1/x); r, b)
x→0; r fixed
−−−−−−−→ 1 . (45)

In Fig. 7 we show how (41) fits the experimental data.

Fig. 7. Examples of the fit with (41)

Using (42) we can write the formula for Fig. 1,

σ(γ∗+p→ J/Ψ +M(Fig. 1))

=G3P (M
2)∆P

∫
d2b exp

(
−
b2

R2

)

×

∣∣∣∣
∫
dzd2r Ψγ∗(r, z,Q

2)A(r, xP )ΨJ/Ψ (r, z)

∣∣∣∣
×

∣∣∣∣
∫
dz′d2r′Ψγ∗(r

′, z′, Q2)A(r′, xP )ΨJ/Ψ (r
′, z′)

∣∣∣∣ ,
(46)

where

A(r, xP ; b) =

∫
d2bΩ(Y ; r, b) . (47)

In (46) we assume that the hard pomeron in the upper legs
of Fig. 1 does not depend on the impact parameter. We
also make the assumption that the triple pomeron vertex
(PH–P–PH) coupling is the same as the triple soft pomeron
vertex (P–P–P ) coupling. PH denotes the hard pomeron,
while P stands for the soft pomeron. R is the radius of the
soft interaction, and it was taken to be equal to R2 = (12+
ln(M2/s0))GeV

−2, with s0 = 1GeV
2.
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The product of the wave functions is taken as [56]

ΨJ/Ψ

(
r, z =

1

2

)
×Ψγ∗,T (r;Q

2)

=
KF

48αem

√
3ΓeeMψ
π

exp

(
−
r2⊥m

2
c

3v2

)

×

{
a2

mc

(
ζK1(ζ)−

ζ2

4
K2(ζ)

)

+mc

(
ζ2

2
K2(ζ)− ζK1(ζ)

)}
, (48)

ΨJ/Ψ

(
r, z =

1

2

)
×Ψγ∗,L(r;Q

2)

=
KF

48αem

√
3ΓeeMψ
π

exp

(
−
r2⊥m

2
c

3v2

)

×

{
Q

2

(
ζ2

2
K2(ζ)− ζK1(ζ)

)}
. (49)

ζ = ar, Ki (where i = 1, 2) are the modified Bessel func-
tions, Γee = 5.26 keV is the leptonic width of J/Ψ . Also, we
have

a2 = z(1− z)Q2+m2c , and xP =
Q2+M2

s
. (50)

The exponential factor in (48) and (49), which describes
the wave function of J/Ψ meson with velocity v, has been
discussed in [57] and references therein. In our calculation
we usemc = 1.45 GeV and v

2 = 0.16.
For the diagram of Fig. 2 we can write the expression

that takes into account the possible rescatterings before
the interaction that produces a J/Ψ meson,

σ(γ∗+p→ J/Ψ +M(Fig. 2))

=G3P (M
2)∆P

∫
d2b exp

(
−
b2

R2

)

Fig. 8. The survival probability for the triple pomeron vertex
in the reaction of (4)

×

∣∣∣∣
∫
dzd2r Ψγ∗(r, z,Q

2)A(r, xP )

× (1−N(Y = ln(1/x); r, b))ΨJ/Ψ (r, z)

∣∣∣∣
×

∣∣∣∣
∫
dz′d2r′ Ψγ∗(r

′, z′, Q2)A(r′, xP )

× (1−N(Y = ln(1/x); r′, b))ΨJ/Ψ (r
′, z′)

∣∣∣∣ .
(51)

The survival probability is the ratio of these two equa-
tions ((46) and (51)):

S23P (J/Ψ) =
σ(γ∗+p→ J/Ψ +M(Fig. 2; (51)))

σ(γ∗+p→ J/Ψ +M(Fig. 1; (46)))
. (52)

The results of our calculations using (52) are plotted in
Fig. 8. One can see that S23P is smaller than 1, not compat-
ible with the assumption of [21]. This should be taken into
account when attempting to extract the value of the triple
pomeron vertex from the measurement of the cross section
of reaction of (4).
At first sight the above values of the survival probabil-

ities seem unusual, as the typical DIS saturation scale is
approximately 1 GeV2, while for J/Ψ DIS production, the
typical scale ism2c+Q

2/4, that is about 2–3 GeV2. We are
not aware of other calculations with which we could com-
pare our results. The calculation is sensitive to the b depen-
dence of the hard amplitude (see Fig. 2). The b dependence
of (41) is different from the exponential parametrization
used in [50–55], and as such it induces strongerΩ screening
corrections. Figuref 7 shows that our model fits the experi-
mental data rather well. For more details see [38].
Taking the survival probabilities corrections into ac-

count when extracting the value of G3P , it is interesting to
study the ratio R=Rp/RJ/Ψ , where

Rp =
σ(p+p→ p+M(M �mp))

σ(p+p→ p+p)
, (53)

RJ/Ψ =
σ(γ∗+p→ J/Ψ +M(M �mp))

G3P (γ∗+p→ J/Ψ +p)
, (54)

so as to validate the theoretical estimates, as well as check-
ing the sensitivity of G3P to the hardness of the coupled
pomerons.

4 Conclusions

In this paper we confirm the wide spread expectation that
the survival probability for the triple pomeron vertex is
very small [21–29, 31–33]. However, whereas we find the
results of our two amplitude model A almost identical to
the results obtained in [21] (which is also a two ampli-
tude model), our three amplitude model estimates are an
order of magnitude smaller. This may also influence the
S2 calculations for other channels. In particular, it was
noted [36, 37] that the various two amplitude calculations
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of S2CD, relevant to exclusive central Higgs production,
are in remarkable agreement. This optimistic evaluation
should be carefully re-examined.
We stress the importance of J/Ψ SD photoproduc-

tion (4). Comparing its high mass diffraction data with the
corresponding p–p scattering, and correcting both chan-
nels with their corresponding survival probabilities, we
hope to evaluate both the value ofG3P and its dependence
on the pomeron’s hardness.
In this context, we emphasize that even though S23P ob-

tained for (4) is considerably higher than S23P obtained for
p–p scattering, its value is less than unity and should not be
neglected.
The details of our three amplitude model B, including

calculations for hard diffraction, and other LRG configura-
tions will be published in a forthcoming paper.
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